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A system of three particles undergoing inelastic collisions in arbitrary spatial dimensions is studied with the
aim of establishing the domain of ‘‘inelastic collapse’’—an infinite number of collisions which take place in a
finite time. Analytic and simulation results show that for a sufficiently small restitution coefficient,
0<r,724A3'0.072, collapse can occur. In one dimension, such a collapse is stable against small pertur-
bations within this entire range. In higher dimensions, the collapse can be stable against small variations of
initial conditions, within a smallerr range, 0<r,924A5'0.056. @S1063-651X~96!00907-5#

PACS number~s!: 47.50.1d, 05.20.Dd

I. INTRODUCTION

A system of particles interacting only through inelastic
collisions is a useful idealization of granular materials, and
has been much investigated recently@1–10#. Inelasticity can
make such a system evolve into a collapse state, in which
several of the particles collide an infinite number of times in
a finite time interval.

Inelastic collapse in one dimension is well understood
@1–4#. In two dimensions, McNamara and Young carried out
numerical investigations and found some evidence for the
inelastic collapses of three particles@5#. To understand the
collapse mechanism in higher dimensions, we study the be-
havior of three particles in a particular model. Our model
involves collisions which preserve the total momentum and
the components of the momentum perpendicular to the line
of centers. The component of the relative velocity along the
line of centers is reversed~as in an elastic collision! and
reduced by the restitution coefficient 0<r<1. We look at a
situation in which one particle~labeled zero! takes part in all
collisions. The other two particles~labeled one and two! are
alternatively a collider and a spectator. We assume that all
particles have the same mass, and that particles one and two
have identical radii.

There are two possible reasons that previous numerical
studies might have shown collapse. One scenario is that the
collapsed state is represented by one or many attractive fixed
points, so that the collapsing orbit can be stable against small
variations in the initial data. The other scenario is that each
orbit is unstable but that the infinity of collapsing orbits pro-
duces an observable collapse probability. For the specific
example of three particles, we find an attractive fixed point
for all dimensions and a sufficiently small coefficient of res-
titution r . Thus we establish the possibility of the first sce-
nario. The second scenario is still possible, but we have seen
no evidence for it. For a largerr , there is an interval in
which the fixed point is unstable against changes in the ini-
tial conditions.

For dimensions greater than one, after the collapse has
occurred, the particles can separate from one another. Thus

beyondd51, inelastic collapse is an event, not an end point,
in the ‘‘lives’’ of the particles.

To study the collapse, we use the methods of the dynami-
cal systems theory. Specifically, we examine the situation in
which particles one and two are very close to particle zero
and aimed so that the system is very close to the collapsing
fixed point. Figure 1 shows a typical configuration. Particle
0 keeps colliding with particle 1 and particle 2 repeatedly,
and an inelastic collapse may occur. After many collisions,
the distances between the particles become small, and the
remaining collisions take place so rapidly that the relative
motion of the particles is small. Therefore, in the inelastic
collapse, the angleu approaches a limiting value as the num-
ber of collision goes to infinity. We identify the constant-u
fixed point and then investigate its stability. We find that a
fixed point of an inelastic collapse exists only when the final
u obeys

cosu>
4Ar
11r

. ~1!

A collapse state will occur whenever this criterion holds and
also steric effect do not block off the required collisions.~For
example, such a blockage will always occur atu5p.) The

*Electronic address: tongzhou@control.uchicago.edu
†Electronic address: LeoP@uchicago.edu FIG. 1. Thenth collision between the collider and particle 0.
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stability analysis implies that for the collapse to be stable
against small perturbations in the initial velocities, a stronger
condition is required, namely

cosu.
2~r !1/3@11~r !1/3#

11r
. ~2!

II. THE COLLISION MODEL

We use the standard model of inelastic collision: due to a
collision the component of the relative velocity of the collid-
ers along the line of centers, changes by a factor of2r . We
denote byuW j andxW j the velocity and the position of thej th
particle at the instant before a collision occurs. Let us con-
sider a collision between particles 1 and 0. In the course of
the collision, the velocities of the particles change to

uW 185uW 12DW ,

uW 085uW 01DW ,

uW 285uW 2 . ~3!

Here, the momentum transfer isDW . It must point in the di-
rection of the line of centers. In terms of the coefficient of
restitutionr this transfer is given by the expression

DW 5
11r

2
~xW12xW0!@~xW12xW0!•~uW 12uW 0!#. ~4!

Here we have assumed that the radii of the colliding particles
sum to unity so that, at the point of collision

~xW12xW0!
251. ~5!

To do the dynamical systems theory, we wish to look at
the very same process repeatedly. Therefore, we introduce
the superscriptsc denoting the collider ands denoting the
spectator particle, as well as a subscriptn to denote the in-
stant before thenth collision occurs~Fig. 1!. For simplicity,
we take the velocity and the position of the particle 0 to be
zero. In order to make sure that the velocity of particle 0
continues to vanish after the collision, we view the postcol-
lision system from a frame moving with velocityuW 085DW .
Then Eqs.~3!–~5! read

uW n11
s 5uW n

c22DW ,

uW n11
c 5uW n

s2DW . ~6!

These equations are supplemented by the conditions

DW 5
11r

2
~xWn

c!~xWn
c
•uW n

c!, ~7!

~xWn
c!251. ~8!

Additionally, both the velocity and the position of particle
0 vanish. Notice that a collider becomes a spectator imme-
diately following a collision. The above equations are

complemented by the equations corresponding to the posi-
tions of the particles at the next collision,

xWn11
s 5xWn

c1tnuW n11
s ,

xWn11
c 5xWn

s1tnuW n11
c . ~9!

The time interval between thenth and the (n11)th colli-
sionstn is such that the magnitude ofxWn11

c is unity.

III. FLAT SURFACE APPROXIMATION

We now seek fixed points in these equations. We assume
that the time between collisions is sufficiently small so that
the tn terms in Eqs.~9! are negligible and consequently

xWn11
s 5xWn

c ,

xWn11
c 5xWn

s , ~10!

during the approach to the fixed point.
We wish to find a fixed point in the components of the

velocity in the direction of the lines of centers. Specifically,
we would like to investigate how this component decreases
in each iteration. We can define

xWn11
c

•uW n11
c [knxWn

c
•uW n

c . ~11!

Taking the dot product of Eqs.~6!, respectively, intoxWn
s

andxWn
c , and using Eqs.~10! gives

xWn11
s

•uW n11
s 52rxWn

c
•uW n

c , ~12!

xWn12
c

•uW n12
c 5xWn11

s
•uW n11

s 1
11r

2
xWn11
c

•uW n11
c cosu. ~13!

Equations~11!–~13! thus imply the recursion satisfied by the
scaling factorkn

kn1152
r

kn
1
11r

2
cosu. ~14!

Fixed points can be found by settingkn115kn in ~14!,

k22k
11r

2
cosu1r50. ~15!

As a result, the fixed point of the scaling factor has two
possible values

k65
11r

4
cosu6F S 11r

4
cosu D 22r G1/2. ~16!

Equation~16! is one of the major results of our study.
In every collision, the colliding particle must approach

particle 0. HencexW c•uW c must be negative in every iteration.
This is possible only ifk is a positive real number. One kind
of failure arises whenk is complex. Then the real part of the
dot product will change signs infinitely often and no fixed
point can be reached. Thus, for an inelastic collapse to occur,
the quantity under the square root in Eq.~16! must be posi-
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tive. This positivity still permits both signs of cosu. How-
ever, if the roots are real and the cosine is negative, both
roots will be negative. Hence neither is a possible solution
for the inelastic collapse. The only remaining possibility is
that the inelastic collapse may occur under the condition on
the cosine given by Eq.~1!. According to that statement,
when r→0, u can have a value between 0 andp/2. On the
other hand, whenu50, the well-known one-dimensional re-
sult is recovered@2#, i.e., inelastic collapse is possible for
0<r,724A3. Regions~a! and~b! in Fig. 2 are the regions
of r andu for which we may have an inelastic collapse.

We now consider the stability of the above fixed points.
Stability will imply that a small change in the initial condi-
tions will leave the system in a collapse state, or in other
words, changes will still permit an infinite number of colli-
sions. There are two collapse fixed points distinguished by
the values of the two multipliersk5k1 and k5k2 . Sub-
tractingk6 from both sides of~14! yields

kn112k6

kn2k6
5
k7

kn
. ~17!

It is seen thatk2 corresponds to an unstable fixed point,
while k1 corresponds to a stable one. Henceforth, we usek
to denote the stable fixed pointk[k1 .

Next, we investigate the time interval between successive
collisions. Assume that the relative motion of the two collid-
ing particles between each pair of collisions covers a dis-
tance which is very small in comparison to their radii. Then
we can think of the surface of the particles as flat. After the
nth collision, the colliding particle moves away from the
surface and covers a distancetnxWn11

s
•uW n11

s . In the next step,
this particle moves back over the same distance, which is
given by2tn11xWn12

c
•uW n12

c and reaches the surface. Thus the
ratio of times is

tn11

tn
5

2xWn11
s

•uW n11
s

xWn12
c

•uW n12
c

. ~18!

This result may be simplified with the aid of Eqs.~11! and
~12! to give

tn11

tn
5

r

k2
. ~19!

Let d denote the shortest distance between two particles. The
distance ratio equals the product of the time ratio and the
velocity ratio,k,

dn11

dn
5
r

k
. ~20!

We performed numerical simulations of the collision pro-
cess by considering three inelastic particles moving in two
dimensions with random initial conditions. When collapse
happens, we compared the ratios calculated from simulations
with the predictions of Eqs.~11! and ~19!, ~20!. We found
excellent agreement~Fig. 3!, indicating that the fixed points
are attractive and indeed correspond to collapse.

IV. VALIDATION OF THE FLAT SURFACE
APPROXIMATION

As observed in the last section, making the approximation
~10! dramatically simplifies the original system and it can be
described by a single ratiokn . It is as if the particles have
flat surfaces, so that the effect of the tangential components
of the velocities of particles 1 and 2 can be ignored. This is
true only if the time intervals are negligible, so that~10! can
be obtained from~9!. We will see when such a simplification
is valid, and we will set a criterion for the range of validity of
the approximation.

On our way to Eqs.~12! and~13!, we neglected terms like
tn(un

c)2 in comparison toxWn
c
•uW n

c , by using approximation
~10!. As noted above, the former terms decrease as

FIG. 2. The parameter space (r ,u) is divided by~1! and~2! into
three regions. For dimensions greater than 1, collapse can only hap-
pen inside region~a!. In region ~b!, particles can have many but
finite number of collisions. In region~c!, particles can hardly get
very close.

FIG. 3. Comparison of simulation results (d for 2uW n
c
•xWn

c , 3
for tn , v for dn) with the theoretical predictions~solid lines! for
the caser50.05 andu50.042.

54 625INELASTIC COLLAPSE OF THREE PARTICLES



(r /k2)n, while the latter terms decrease askn. Thus, the flat
surface approximation is reliable only whenr,k3 so that
terms proportional totn can be safely ignored. This condition
can be explicitly written as,

r,S 11r

4
cosu1F S 11r

4
cosu D 22r G1/2D 3, ~21!

which can then be simplified into the form of condition~2!.
The region of stability determined by this condition is region
~a! in Fig. 2. The maximum possible value ofr for stable
behavior isr c5924A5.

To this point, our calculation did not rely on the circular
geometry of the particles. The name ‘‘flat surface’’ suggests
that when criterion~2! is satisfied, particles do not experi-
ence the curvature of their surfaces, and collide as if they are
flat. This calculation is valid for arbitrary particle shapes
when ~2! is satisfied.

We also observe that when criterion~2! is satisfied, the
time intervaltn decreases faster than the radial component of
the velocities. In such a situation, collapse happens so
quickly that all other effects, external or internal, have no
essential influences on the process. One can further consider
arbitrary interactions between the particles as well as arbi-
trary external fields, as long as all the interactions depend
only on the relative positions. Since the particles’ relative
positions only change very little during the process of col-
lapse, all the effects of the interactions on, say, particle 1 can
be replaced by a constant total force acting on it which in-
duces a constant acceleration. This acceleration has very
little effect in the tangential direction since the time interval
is too small for it to change the tangential component of the
velocity. When the flat surface approximation is valid, the
time interval is even too small to change the radial velocity
component. We conclude that the previously obtained fixed
points are unchanged.

V. CIRCULAR GEOMETRY

In the preceding sections, the calculations were performed
by neglecting thetn terms completely out of Eqs.~9! and the
fixed points for inelastic collapse were found when the final
state satisfied condition~2!. After understanding the charac-
teristic behavior of the collapse, we can do a more rigorous
calculation to investigate how the system behaves outside the
region satisfying~2!.

We now see that during the collapse process, the radial
velocity components of particles 1 and 2 monotonically de-
crease till they vanish at the moment of singularity, while
their tangential components approach limiting values as the
number of collision diverges. Hence we take those tangential
components as constants, and concentrate on the radial com-
ponents in the calculation of fixed points.

For simplicity we study in detail one collision in the situ-
ation where particle 1 has a zero radius while particle 0 has
a unit radius. Since the theory depends only upon the sum of
the two radii, this case subsumes all others. Here we denote
the initial instant with a subscripti , and the instant before the
collision with f . We drop the superscripts since only particle
1 is considered. We also assume the particles are very close,
d!1, and2uW •xW i!ut , where ut is the magnitude of the

tangential velocity component of particle 1. The collision
time is

t5
1

ut
S 2uW •xW i

ut
2F S uW •xW i

ut
D 222dG1/2D . ~22!

Immediately before the collision, the radial velocity compo-
nent of particle 1 equals

2uW •xW f5@~uW •xW i !
222dut

2#1/2. ~23!

Equation~22! gives the quantity needed to complete the
equation set~6!–~9!. In order to abbreviate this calculation,
we introduce an effective centrifugal acceleration. In the
above calculation, if we view the situation in a frame rotating
with an angular velocity ofut , around an axis perpendicular
to bothuW and the line of centers, passing through the center
of particle 0, then particle 1 has zero tangential velocity, and
the effect of the tangential velocity can be represented by a
centrifugal accelerationa15ut

2 . This substitution is justified
by noticing that we can get exactly the same expressions as
~22! and ~23! by using this acceleration. We do not really
need to use such a rotating frame. We usea1 as an effective
centrifugal acceleration to replace the tangential component
of the velocity with the same effects.

After these preparations, we are in a much clearer posi-
tion. Particle 1 and particle 2, respectively, have centrifugal
accelerationsa1 and a2 , which are all in the radial direc-
tions. Equation~10! is again a good approximation. Particle
1 is moving on a line, and so is particle 2. We can further
drop the vector notation. In the following, we useu to denote
the radial component of the velocity of particles 1 and 2
immediately before a collision, with its positive direction
pointing towards the center of particle 0. Consequently,
a152u1t

2 anda252u2t
2 .

The equation set~6!–~9! reduces to

un11
s 52run

c1an11
s tn ,

un11
c 5un

s1
11r

2
~cosu!un

c1an11
c tn ,

dn5un11
c tn2

1

2
an11
c tn

2 ,

2dn1152run
ctn1

1

2
an11
s tn

2 ,

an11
c 5an

s ,

an11
s 5an

c , ~24!

wheredn is the distance between the spectator and particle
0 at the instant of thenth collision. Recall thattn is the time
interval between thenth and (n11)th collisions.

One simple case can be fully carried through, the case
a15a2[a. In this case, particle 1 and particle 2 are in a
symmetrical situation so that the recursion relation of the
system can be obtained after a single collision.
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As we did before, we use two nondimensional numbers
kn andan to describe the evolution of the system

kn[
un11
c

un
c andan[

2atn
un
c . ~25!

Starting from~24!, after some straightforward calculation,
we get the following recursion relation:

kn115F S 11r

2
cosu2

r

kn
D 22~11r !cosu

an

kn
G1/2, ~26!

and

an115
11r

2
cosu2

r

kn
2

an

kn
2F S 11r

2
cosu2

r

kn
D 2

2~11r !cosu
an

kn
G1/2. ~27!

Suppose the fixed point is (a,k), then from~27!, we have

a5

2k21
11r

2
~cosu!k2r

k11
. ~28!

Sincea>0 from its definition, the right-hand side~rhs! of
the above equality must be non-negative. Thus there must
exist two real solutions ofk satisfying rhs50. And we
readily recover the condition~1!.

Substituting~28! into ~26!, we have

k45S 11r

2
~cosu!k2r D 22~11r !

3~cosu!k

2k21
11r

2
~cosu!k2r

k11
. ~29!

Of coursek6 which appeared before, are solutions of~29!.
From ~28! we learn that (0,k6) are fixed points. Let us look
at other solutions of Eq.~29! which satisfy

k31S 11
11r

2
cosu D k22S r1

11r

2
cosu D k2r50.

~30!

This equation has one and only one solution ofk in the
interval @0,1#. We denote the corresponding fixed point as
(a0 ,k0). Of the three relevant fixed points, (0,k2) is un-
stable, and we concentrate on the stability condition for the
other two fixed points.

Suppose that (an ,kn) has a small deviation from the fixed
point (a,k). Then

S dkn11

dan11
D 5SA11 A12

A21 A22
D S dkn

dan
D , ~31!

where

A115
1

2k3 F2S 11r

2
cosu2

r

kD r1~11r !~cosu!a G ,

A1252
~11r !cosu

2k2
,

A215
a1r

k2
2A11,

A225
~11r !cosu22k

2k2
.

Let us denote byl the eigenvalue of matrixA, hence we
have

l22bl1c50, ~32!

where

b5
1

2
2
1

k
1F ~11r !cosu2S 11r

2
cosu D 2G 1

2k2

1r ~11r !~cosu!
1

k3
2
3r 2

2k4
,

c5
r 2

k5
.

For the fixed point (0,k1),

b5
r

k1
3 ~11k1! andc5

r 2

k1
5 . ~33!

So

l15
r

k1
2 andl25

r

k1
3 . ~34!

The point (0,k1) is an attractive fixed point if and only if
r,k1

3 . Hence we recover the condition of~2!. If we only
requirel1,1, we can recover condition~1!.

For the fixed point (a0 ,k0), we find thata0.0 if and
only if the condition of~2! is satisfied, but that condition also
decides the range of (r ,u) inside which we will have

12b1c,0. ~35!

From Eq.~32! we know that one eigenvalue of matrixA is
larger than 1, implying that the corresponding fixed point is
unstable. We conclude that there are no additional stable
fixed points beyond those which satisfy condition~2!, and
there are no stable collapses outside that range in the case
a15a2 .

We believe this is true for the general situation ofa1
Þa2 . When condition~2! is violated, our simulations show
that even though the particles can be very close, they will get
apart before having collided an infinite number of times.

From the above calculation, and specifically Eq.~34!, we
can see the parameter space (r ,u) can be divided into three
regions~Fig. 2!:

~a! When condition~2! is satisfied, both the eigenvalues
of matrix A are smaller than unity. The fixed point is stable
in all directions in space (a,k). It is the collapse region.
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~b! When condition~2! is violated but the condition~1! is
satisfied, the eigenvaluel2.1, while l1,1. In this region,
particles can have any number of collisions before they
might eventually separate.

~c! When the condition~1! is violated, both eigenvalues of
matrix A are larger than unity. Collapse does not occur.

The above calculation is independent of the sources of the
accelerations, which could be the interactions between par-
ticles. The calculation confirms our previous argument that
interactions are irrelevant in the process of collapse.@But
when there is a sufficiently strong attraction, e.g., gravity,
between particles so that the directions of the accelerations
are reversed, we want fixed points witha<0. Then the fixed
point (a0 ,k0) becomes stable when condition~2! is violated.
Inelastic collapse can happen in a much larger region of
(r ,u).#

We also observe that in the above calculation, the circular
geometry of the particles is not essential. The calculation is
also valid for the arbitrary shape of the particles, with the
corresponding radius of curvature replacing the radii used.
Even though the radius of curvature is not relevant in decid-
ing the behavior of the collapse process, since the radii do
not show up in the expression of the stable fixed point or

condition ~2!, it does have some effects. The centrifugal ac-
celeration, which obviously is important in deciding the
probability of collapse, is inversely proportional to the ra-
dius. So chances are larger for collapse to happen when the
colliding point is at a position on the surface with a larger
radius of curvature.

VI. CONCLUSION

We demonstrated analytically the existence of an inelastic
collapse for three particles in all dimensions. At the last mo-
ment of collapse, the three particles have a cyclic behavior,
which is characterized by a fixed point. We have established
the range of the parameters for which the fixed point exists
and the range for which it is stable.
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